半导体激光器电源设计技术汇总 二维码
155
发表时间:2024-09-26 10:00 自从激光被发明以后,各种的应用随即发展起来,但真正能应用在消费性电子产品是在半导体激光(或称激光二极体,LaserDiodeLD)发明之后,特别是在1977年发明的面射型激光(VCSEL),因为半导体激光具有轻巧、电光转换效益高、低消耗功率、寿命长、及易由电流来控制其光输出功率、且调制频率可达10GHz以上等特性。这些特性使它可广泛应用于资讯处理、光纤通讯、家电用品等民生消费电子产品上,未来半导体激光将带动另一波的光电消费性电子产业。以下介绍半导体激光器在电源设计中的一些方案。 1.半导体激光管LD的电源设计 半导体激光管(LD)和普通二极管采用不同工艺,但电压和电流特性基本相同。在工作点时,小电压变化会导致激光管电流变化较大。此外电流纹波过大也会使得激光器输出不稳定。二极管激光器对它的驱动电源有十分严格的要求;输出的直流电流要高、电流稳定及低纹波系数、高功率因数等。随着激光器的输出功率不断加大,需要高性能大电流的稳流电源来驱动。为了保证半导体激光器正常工作,需要对其驱动电源进行合理设计。并且随着高频、低开关阻抗的MOSFET技术的发展,采用以MOSFET为核心的开关电源出现,开关电源在输出大电流时,纹波过大的问题得到了解决。 系统构成 装置输入电压为24V,输出最大电流为20A,根据串联激光管的数量输出不同电压。如果采用交流供电,前端应该采用AC/DC作相应的变换。该装置主要部分为同步DC/DC变换器,其原理图如图1所示。 Vin为输入电压,VM1、VM2为MOSFET,VM1导通宽度决定输出电压大小,快恢复二极管和VM2共同续流电路,整流管的导通损耗占据最主要的部分,因此它的选择至关重要,试验中选用通态电阻很低的M0SFET。电感、电容组成滤波电路。测量电阻两端电压与给定值比较后,通过脉冲发生器产生相应的脉宽,保持负载电流稳定。VM1关断,快恢复二极管工作,快恢复二极管通态损耗大,VM2接着开通续流,减少系统损耗。
文章分类:
光电百科
|